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The Quins  

The Quin-puzzle is, inter alia, described by Dumontier in "Les Nouvelles d'APL", No 8 
(Oct. 1993), under the name "Quinto", restricted to small examples with N ¹3 5.  

Given a square board with N×N sub-squares, clicking any such sub-square will invert 
its colour, as well as the colour of the four horizontal and vertical adjacent sub-squares, 
(provided these lie within the main square or board): every click inverts a swiss 
cross:   

So, for a 3×3 board, the solution is almost trivial and may be deduced intuitively, by 
pure symmetry: What holds for one corner shall hold for all four corners. What holds 
for the sub-square that lies in the middle of the first row shall hold for the three other 
sub-quares which lie in the middle of the last row, and in the middle of the first and of 
the last columns; so, few combinations have to be tested before one finds that the st 
Andrew cross is the unique solution:  

The pattern on the right is a proof that clicking the sub-squares delimited 
by the ×-cross fills the board.  

Conversely, if the colour-inverting pattern were the ×-cross, a solution would be (by 
duality) the former inverting pattern, a Swiss (or Savoy or +) cross ("sharing cross"?).  

Now, given a 4×4 board, how can one find the solution? Then, for a N×N board, with N 
much greater than 4 or 5, how can we 1) know if there is a solution, 2) find it in the 
most convenient way?  

Some special mathematical developments have to be thought of...  

But, from the beginning, we should remain aware of the fact that such a puzzle - like 
many other ones - is purely binary; so, using anything else than pure binary algebra, 
then bit matrices, shall appear as a waste (of time, of thought, of computing power, of 
mathematics).  

Let us go back to the 3x3 board and describe the 9 possible clicks by their effect on the 
whole board plus one virtual row and column on every side. In other words, the original 
3x3 board is replaced by a 5x5 one. A click (symbolised by �¤ in the upper leftmost 
corner of the 3x3 board on the left only inverts 3 sub-squares in the real board (in solid 
colour) and 2 sub-squares outside (in half-tone grey in the 5x5 virtual board):  

 

 



            |     | 

         _ 0 1 0 0 0 _ 

           1 1 1 0 0 

           0 1 0 0 0 

         _ 0 0 0 0 0 _  

           0 0 0 0 0 

            |     |  
This click corresponds to the binary matrix mask hereabove.  

Once ravelled into a 25-item vector, the mask becomes:  

0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  

            † † †     † † †     † † †  

The arrows point to the bits which belong to the 3×3 board.  

The 2nd mask, for a click in the middle of the 1st row of the 3×3 board, corresponds to 
¯1² applied to the 1st mask:  

0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  

The 3nd mask, for a click right of the 1st row of the 3×3 board, corresponds to ¯1² on 
the 2nd mask or to ¯2² on the 1st mask:  

0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0  

For the second row, we have, respectively, ¯5² ¯6² ¯7² of the 1st mask, while for 
the 3rd row, the shifts become ¯10² ¯11² ¯12² respectively.  

Dropping the first 6 items and the last 6 items of all these 25-item vectors, then items 
which do not belong to the 3x3 board, one obtain the 9x9 matrix of the binary rule for 
all the inverters. Then, we go back to the solution of the MAGIC puzzle [cf. "Les 
Nouvelles d'APL" No 7 (May 1993) as well as "VECTOR" Vol. 10 No 1 (July 1993): 
two papers by M. Day, and G. Langlet).  

 M ©  M is a binary matrix with 81 items: 

1 1 0 1 0 0 0 0 0  
1 1 1 0 1 0 0 0 0  
0 1 1 0 0 1 0 0 0  
1 0 0 1 1 0 1 0 0  
0 1 0 1 1 1 0 1 0  
0 0 1 0 1 1 0 0 1  
0 0 0 1 0 0 1 1 0  
0 0 0 0 1 0 1 1 1  
0 0 0 0 0 1 0 1 1 

 

which is best displayed, using 
semi-graphics, as shown on the 
right, with the help of the 
paper- sparing function "FG", 
given in the Appendix, that will 
prove useful for greater values 
of N, formating the QUINs. 

 

So, if I is the modulo2 inverse matrix of M, then the solution will be given by: 
3 3½¬/I which is the solution of an integer system of 9 equations modulo 2, knowing 
that the starting pattern is 3 3 ½ 0 (empty pattern, then 9½0 when ravelled), and that 
the goal is 3 3½1 (full pattern i.e. 9½1 when ravelled), the modulo2-difference or 
binary difference between both patterns being the same as the full pattern: All the 
second members of the equations are l's, hence the ¬/ shortcut.  

If X is the unknown solution, ravelled, then X¬.^M (or 2|X+.×M) shall return a vector 
of l's.  



In this case, a search for the successive matrix powers of M immediately shows (it is 
almost intuitive), that M¬.^M¬.^M¬.^M is a unitary matrix, so that matrix inversion 
becomes useless: I has to equal M¬.^M¬.^M i.e. the cube of M. So, a very short ISO-
APL expression gives the unique solution for N¦3 (problem QUIN 3); it is 
3 3½¬/M¬.^M¬.^M once one has built matrix M, in fact directly as the reduction both 
along the rows and the columns, by the same binary mask B:  

0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0  

of a larger 25×25 matrix which takes care of the corners and of the sides, in which each 
row is a circular rightwards-shift by one item of the clicking effect of the Swiss cross 
for the 25 sub-squares of the larger matrix.  

If N is the size of the puzzle, the size is N+2 for the virtual pattern matrix; however, the 
patterns may be obtained - cf. the QUIN function in the Appendix, even without circular 
shift.  

When N grows, the number of items within M will always be N*4. Already, this will 
prohibit the use of floating-point arithmetics; e.g. with � (the domino), the result of 
which is always "real", requiring, in APL, 64 bits per item. Even if it were possible to 
use � as well as nice functions for computing the determinant - as proposed by M. Day 
for MAGIC, and by M. Dumontier for the Quinto, and if the workspace offered a very 
large size, the domino would produce WRONG results, because of floating-point 
catastrophic roundings (truncations) all along the huge number of operations which 
would be necessary: this domino is a black box for the APL user... (the same holds for 
the inverting subroutines of mathematical FORTRAN libraries).  

And the "almost-intuitive method by symmetry", which allowed to solve MAGIC or the 
QUIN for N¦3, raising M to some low power, cannot be general:  

For a binary square matrix M with order N×N or N*2 i.e. with shape 2½N×N, then, if the 
matrix is invertible, the maximum power so that M raised to this power equals a unitary 
matrix, is: ̄ 1+2*N×N or ¯1+2*N*2: such a huge value, e.g. for N¦20, prohibits the 
attempts of replacing matrix inversion by products. Moreover, when matrix M is not 
invertible, no power of M will ever equal a unit matrix!  

Indeed, a new method for binary matrix inversion had to be worked out...  

 



More mathematical difficulties  

Here is matrix M for N¦4 together with its graphic 
look ‡‡‡  

1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0  

1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0  

0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0  

0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0  

1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 

0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0  

0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 0  

0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0  

0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0  

0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0  

0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0  

0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1  

0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0  

0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1  

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1  

Since this matrix is still small, we can consult the gentle "domino-astrolog", just as a 
matter of curiosity:  

 R„�M  

DOMAIN ERROR  

 R„�M  

   ^  

Here are the graphic outputs for matrices M with N¦5 and N¦6:  

 

The "domino astrolog" also reports 'DOMAIN ERROR' for N¦5, but works - it does not 
report any error - for N=6. We do not care about R itself; the astrolog was used as a 
failure test... ONLY.  

Anyhow, for the moment, the fact that the determinant of M may be 0 or different from 
0 remains... impredictible. But we have quickly found (without computing the 



determinant), because � immediately returns an error - which is not, for these small 
values of N, a LIMIT error - that M may be NOT-invertible, in quite a lot of cases. So, 
in the GENERAL case, matrix inversion will fail... with or without our domino!  

 

Solving the paradox  

Function IG (matrix Inverse in the General case) is a revisited domino for binary - or, 
rather, integer-modulo2 matrices (and a nice proposal of extension for APL itself).  

IG always produces, as a solution, an invertible matrix, even with an all-zero matrix as 
its argument!  

In integer modul02 algebra, (in the set Z/2Z), 0 means number 'Zero', while 1 means 
'Everything which is not 0', INCLUDING infinity!): 1 is THE infinite for 0, (its 
inverse)... There is no sign in such an algebra, so that there is only one type of infinity. 
When a null square matrix also represents 0, then a unitary matrix represents 1, and also 
the inverse of the null matrix: the secret lies within a definition.  

The Algorithm which is used in the IG function, is based on APL-T.O.E. concepts (cf. 
APL92, St Petersburg): Every algorithm should reduce to combinations of ¬ and ¬\ 
(¬/ being a sub-case of ¬\). This had to hold also for matrix inversion, when M is a 
binary matrix, considered as containing (Z/2Z)-data.  

IG is an optimiser: without knowing the value of the determinant (which is 1 for all 
strictly modul02-invertible matrices, and 0 otherwise), it will automatically find the 
minimum subset of orthogonal (independent) vectors of the matrix vector-space, and 
complete, if non-independent vectors are found, by vectors which will form a subsidiary 
independent vector-space for the original order N×N of matrix M. Hence the fact that the 
inverse of a null matrix becomes a unitary matrix.  

So, for a strictly-invertible matrix M, function IG finds the exact inverse I, with no 
error, even for large values of N×N in the relatively-simple QUIN problem, and IN 
GENERAL.  

For a non-strictly invertible matrix, IG will find the minimal solution (and, when it is 
programmed to do so, stop iterating earlier than when M is strictly invertible!); this 
solution is ALWAYS an invertible matrix, which, if re-inverted, will exactly reproduce 
the first rows and columns of M which correspond to the orthogonal (independent) 
vector-space (the basis).  

Then, in some QUIN puzzles, the full symmetry of the square is destroyed (one would 
say that 'symmetry break' has occurred, in theoretical physics).  

Other minimum solutions are equivalent by symmetry within the square board N×N, if 
one rotates the pattern which has been found, or if one reverses it (using, in APL, 
functions ² ´ ³ and their combinations).  
Of course, because all matrices M are diagonal-band sparse matrices, there are other 
known ways of inverting them.  

The main goal of the present paper was not puzzle solving, but General Problem 
Solving, introducing an algorithm for the inversion of ALL binary/modulo2 matrices, 
which would NEVER signal any error, and find orthogonal sub-spaces, even in the case 
of classical non-inversibility, while all methods with uncontrolled roundings will 
undoubtfully fail, for large cases.  



The QUINs are naive puzzles (at least, in "MAGIC"/"Inversion Diabolique", all masks, 
also named "inverters", are different). One can try to build more sophisticated QUINs, 
with a shape of the mask that will depend on each sub-square: in such a case, matrix M 
will no longer look like a band-matrix; hence the need for a general inverter. But this 
problem is nice for checking.  

In order to prove that giant puzzle solving may be undertaken on a PC with an 
interpreted language (a few lines of APL code) in a small workspace, Appendix 1 
presents the panoply of QUINs, while Appendix 0 presents the APL functions.  

In despite of limitations imposed by IBM, and of memory-adress limits in the PC-AT 
machines, QUIN 15 (forming a binary matrix with order 225 ie 50625 items) can be 
solved even with TryAPL2 for free (because TryAPL2 codes binary items in bits).  

Middle-order QUINs were obtained (and saved) using APL.68000 on the Macintosh and 
the Atari, high-order ones with APL*PLUS II on 386 (Compaq) and 486 (Dell) PC-
compatible machines.  

QUIN 47 requires matrix inversion of a non-invertible matrix with 4,879,681 items. The 
invertible matrix of QUIN 48 contains 5,308,416 items. The inaccurate result of the 
domino, if � could work for a matrix with 2304 rows and columns (?), would require 
42,467,328 bytes of storage for its result alone. This number is already beyond the 
capacity of all usual PC's and large enough to make people reluctant to lose their time 
with floating-point arithmetics. And 48 is still a small number...  

Some patterns are amusing (cf. the 'writing-machine' for N¦9, the 'priest' for N¦44) .  

All are, anyhow, aesthetical.  

 

Reference  

Some more details will be given in a paper entitled "La Quintescence du Quinto" 
especially about matrix powers, in "Les nouvelles d'APL" No 9 (Dec. 1993). Other 
references are given in the text. A fully-documented software will be available at the 
Software Exchange Booth, at APL94, Antwerp, Belgium, for several APL 
implementations.  
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Louis Metayer shall be thanked for help, getting the higherorder QUINs on a fast 486 
machine with a 66 MHz clock (and he is still going on, in order to increase his 
collection).  

IBM and all the team which realised TryApl2 as a free APL interpreter also deserve a 
special mention: for the first time, the capabilities of APL & APL2 can be shown with a 
powerful and pleasant implementation which handles binary items in bits, so that many 
teachers of mathematics, students and physicists can discover the courses about 
binary/modulo2 matrix algebra we have developed, with plenty of consequences in 
physics and computer science, as well as in biology, especially in genetics. (For the 
moment, this (free) course is in French)/  

 



Appendix 0  Functions  

 ’R„QUIN N;E;F;G;H;L;P;Q;V  

[1] Q„N×P„N+1+1ª F„1+1†L„G,G„×/H„P,Pª E„N,Nª V„G†Q½P†N½1ª L„-P+1  

[2] M„H†3 3½0 1 0 1 1 1 ª M„,M ª M„F†M ª M„L½M ª M„VšM ª V„L²V  

[3] M„V/M ª X„IG M ª S„E½X„¬/X ª R„FG S ª R„R,'|',FG E½¬šXšM  

’  

M and X are global. The function is a sequence of short ISO-APL parenthesis-free 
expressions, so as to prevent "ws FULL". It can become a one-line function.  

 ’M„IG M;D;I;J;K;L;N;S;V  

[1] I„ŒIO¬J„l ª L„¼D„1†S„½M ª K„½I‡V„D†1 ª M„M,S½V,0  

[2] 'I„,M[N„V/L;] ª J„V¬M[;I¼1] ª J„½I„J/L  

 ª M[I;]„M[I;]¬M[J„J/N;] ª V„0,¯1‡V' wh 'K¬N'  

[3] V„M[;L] ª V„S†V ª V„1,V ª V„¬\V ª V„^\V ª V„+/V ª V„“V  

[4] N„0,D ª M„N‡M ª M„M[V;]  

’  

Several versions were tested. IG can also become a one-line fn. Lines [3] and [4] can be 
made much shorter; again, decomposing into elementary statements is an insurance 
against "WS FULL". “ on arrays is not used although it could be: a) because it is not an 
ISO-standard, b) because it may produce WRONG results, on large matrices, due to - 
again - the deficiencies of floating arithmetics, c) because, on permutation matrices, ¬\ 
is much faster (there are some fundamental connections between ¬\ and ““: "grade" 
and "grade grade" themselves ARE connected to binary matrix inversion, so that the 
problem is recursive!).  

The main part of CP time is consumed by line [2]; so, efforts to use ¬ only as THE 
PRIMITIVE in the algorithm were successful; (diadic ¼ can also be replaced by ¬ and 
compression by a mask) .  

 ’ ‘E wh ‘L;‘C             © the "while" function  

[1] ‘C„–•‘L ª –‘C/‘E ª …‘C/1   © executes ‘E while –‘L  

 ’                         © remains TRUE.  

Note. The "wh"-loop condition may be replaced by a condition that will stop the 
iteration as soon as matrix M is not invertible; this is detectable in I¼1 and best realised 
by error-trapping, replacing "wh" by a "while_no_error_occurs" fn; then, lines [3] and 
[4] will, as an example, return a unitary matrix as the generalised inverse of a null-
matrix in the extreme case of non-strict-inversibility. A problem with the domino (alrea-
dy noticed by the late Gilles Martin at APL80, Noordwijkerhout/Leiden (NL», is that 
one loses some useful results which are hopelessly replaced by the fatal "DOMAIN 
ERROR" message.  

Such a WHILE-loop may be semantically considered as a scanning operation along the 
columns of M. One can as well scan the rows of M. The ¬ while-scanning is a temporal 
form of differencescanning in parallel (¬\ is more present in the IG function than one 
may think!). within the function, the original M is stepwise-transformed into a 
permutation matrix, while in the reciprocal space, a unitary matrix suffers from the 
same scanning, and, stepwise, becomes the inverse matrix of M, except for a 
permutation of its rows which is rearranged at the end by the reciprocal (just transposed) 
permutation matrix, obtained as the left part of M. One can also use two matrices 
instead of a single "CinemaScope" M within IG. Then, the APL version becomes 
slightly slower, while the risk of "WS FULL" decreases.  



Function FG is trivial, a good exercise for the reader with the semi-graphic characters 

 of the PC-ŒAV. (Such graphic outputs required, on the Macintosh, to modify 
the APL.68000 font).  

 ’R„FG B;K;L;N;ŒIO  

[1] N[ŒIO„O]„K„K+2|K„1†N„½B ª B„N†B ª L„1¬K„K½1 0 ª R„KšB„N†B  

[2] R„' '[2ƒR,[¯.1]LšB] ª © R„'|',R,'|'  

’  

This is one of the possible versions. Removing the "©" allows to catenate a full vertical 
bar left and right to show that the output corresponds to a matrix, Formatted 
Graphically. Example:  

 A„FG M„²GENITON 29 ª A,' ',FG IG M  

 

This example clearly illustrates the properties of "genitons", when ² or ´ mirrored: 
these self-similar (Sierpinski) matrices are modulo2-self-matrix-inverses for all orders 
from 2 to infinity; the example with order 29 is chosen just to fit the page width. For 
such matrices (this was unknown before the "APL-TOE" paper at APL92), IG can be 
tested nicely, but is of... no use. The successive rows of this matrix M may also be 
obtained as the 29 successive iterates of ¬\ with initial B set to 32†1:  

 M„0½B„32†1 ª 'M„M,¯29†B„¬\B' do 29 ª FG IG M„²29 29½M  

© e.g. with the "do" function:  

©  ’ ‘E do ‘N  

© [1] ‘N„‘N×½‘E„‘E,'ª' ª –‘N½‘E

  

© ’  

© One may omit IG in the here 
© above statement and get the 
© same output  
© 32 is 2*—2µ29 the first power  
© of 2 not lesser than the wanted order for the 
matrix.  

¬\¬\¬\  

 



 

Appendix 1  The dynasty of QUINs  

 



 

NB. À partir de ce point, pour cette version électronique, les zones de 
contrôle noires à droite des Quin ont été omises. 

         

         

     

 



     

   

   

 



 

 

 



 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 


