
APL-CAM Journal, Vol. 16, No.1, 16 January 1994, pp. 53-73.
Received: 21 December 1993. Copyright 1994: G.A. Langlet.

GOD SAVE THE QUINs!

Gérard A. Langlet

CEA/DSM/DRECAM/SCM/LIT

C.E. Saclay

F-91191 Gif-sur-Yvette

Abstract:

This paper is intended to prepare a "Round Table" about Binary Algebra at APL94 in
Antwerp. Based on the solutions of a complex puzzle, it shows the efficiency of matrix
inversion when this latter is considered no more in floating-point arithmetics, but with pure
binary or modulo2-integer algebra concepts, allied with the power of APL implementations
on present-time micro-computers.

GOD SAVE THE QUINs!

Gérard A. Langlet

CEA/DSM/DRECAM/SCM/LIT, C.E. Saclay, F-91191 Gif-sur-Yvette

Abstract

This paper is intended to prepare a "Round Table" about Binary Algebra at APL94 in
Antwerp. Based on the solutions of a complex puzzle, it shows the efficiency of matrix
inversion when this latter is considered no more in floating-point arithmetics, but with
pure binary or modul02-integer algebra concepts, allied with the power of APL
implementations on present-time micro-computers.

The Quins

The Quin-puzzle is, inter alia, described by Dumontier in "Les Nouvelles d'APL", No 8
(Oct. 1993), under the name "Quinto", restricted to small examples with N ¹3 5.

Given a square board with N×N sub-squares, clicking any such sub-square will invert
its colour, as well as the colour of the four horizontal and vertical adjacent sub-squares,
(provided these lie within the main square or board): every click inverts a swiss
cross:

So, for a 3×3 board, the solution is almost trivial and may be deduced intuitively, by
pure symmetry: What holds for one corner shall hold for all four corners. What holds
for the sub-square that lies in the middle of the first row shall hold for the three other
sub-quares which lie in the middle of the last row, and in the middle of the first and of
the last columns; so, few combinations have to be tested before one finds that the st
Andrew cross is the unique solution:

The pattern on the right is a proof that clicking the sub-squares delimited
by the ×-cross fills the board.

Conversely, if the colour-inverting pattern were the ×-cross, a solution would be (by
duality) the former inverting pattern, a Swiss (or Savoy or +) cross ("sharing cross"?).

Now, given a 4×4 board, how can one find the solution? Then, for a N×N board, with N
much greater than 4 or 5, how can we 1) know if there is a solution, 2) find it in the
most convenient way?

Some special mathematical developments have to be thought of...

But, from the beginning, we should remain aware of the fact that such a puzzle - like
many other ones - is purely binary; so, using anything else than pure binary algebra,
then bit matrices, shall appear as a waste (of time, of thought, of computing power, of
mathematics).

Let us go back to the 3x3 board and describe the 9 possible clicks by their effect on the
whole board plus one virtual row and column on every side. In other words, the original
3x3 board is replaced by a 5x5 one. A click (symbolised by �¤ in the upper leftmost
corner of the 3x3 board on the left only inverts 3 sub-squares in the real board (in solid
colour) and 2 sub-squares outside (in half-tone grey in the 5x5 virtual board):

 | |

 _ 0 1 0 0 0 _

 1 1 1 0 0

 0 1 0 0 0

 _ 0 0 0 0 0 _

 0 0 0 0 0

 | |
This click corresponds to the binary matrix mask hereabove.

Once ravelled into a 25-item vector, the mask becomes:

0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

 † † † † † † † † †

The arrows point to the bits which belong to the 3×3 board.

The 2nd mask, for a click in the middle of the 1st row of the 3×3 board, corresponds to
¯1² applied to the 1st mask:

0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

The 3nd mask, for a click right of the 1st row of the 3×3 board, corresponds to ¯1² on
the 2nd mask or to ¯2² on the 1st mask:

0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

For the second row, we have, respectively, ¯5² ¯6² ¯7² of the 1st mask, while for
the 3rd row, the shifts become ¯10² ¯11² ¯12² respectively.

Dropping the first 6 items and the last 6 items of all these 25-item vectors, then items
which do not belong to the 3x3 board, one obtain the 9x9 matrix of the binary rule for
all the inverters. Then, we go back to the solution of the MAGIC puzzle [cf. "Les
Nouvelles d'APL" No 7 (May 1993) as well as "VECTOR" Vol. 10 No 1 (July 1993):
two papers by M. Day, and G. Langlet).

 M © M is a binary matrix with 81 items:

1 1 0 1 0 0 0 0 0
1 1 1 0 1 0 0 0 0
0 1 1 0 0 1 0 0 0
1 0 0 1 1 0 1 0 0
0 1 0 1 1 1 0 1 0
0 0 1 0 1 1 0 0 1
0 0 0 1 0 0 1 1 0
0 0 0 0 1 0 1 1 1
0 0 0 0 0 1 0 1 1

which is best displayed, using
semi-graphics, as shown on the
right, with the help of the
paper- sparing function "FG",
given in the Appendix, that will
prove useful for greater values
of N, formating the QUINs.

So, if I is the modulo2 inverse matrix of M, then the solution will be given by:
3 3½¬/I which is the solution of an integer system of 9 equations modulo 2, knowing
that the starting pattern is 3 3 ½ 0 (empty pattern, then 9½0 when ravelled), and that
the goal is 3 3½1 (full pattern i.e. 9½1 when ravelled), the modulo2-difference or
binary difference between both patterns being the same as the full pattern: All the
second members of the equations are l's, hence the ¬/ shortcut.

If X is the unknown solution, ravelled, then X¬.^M (or 2|X+.×M) shall return a vector
of l's.

In this case, a search for the successive matrix powers of M immediately shows (it is
almost intuitive), that M¬.^M¬.^M¬.^M is a unitary matrix, so that matrix inversion
becomes useless: I has to equal M¬.^M¬.^M i.e. the cube of M. So, a very short ISO-
APL expression gives the unique solution for N¦3 (problem QUIN 3); it is
3 3½¬/M¬.^M¬.^M once one has built matrix M, in fact directly as the reduction both
along the rows and the columns, by the same binary mask B:

0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0

of a larger 25×25 matrix which takes care of the corners and of the sides, in which each
row is a circular rightwards-shift by one item of the clicking effect of the Swiss cross
for the 25 sub-squares of the larger matrix.

If N is the size of the puzzle, the size is N+2 for the virtual pattern matrix; however, the
patterns may be obtained - cf. the QUIN function in the Appendix, even without circular
shift.

When N grows, the number of items within M will always be N*4. Already, this will
prohibit the use of floating-point arithmetics; e.g. with � (the domino), the result of
which is always "real", requiring, in APL, 64 bits per item. Even if it were possible to
use � as well as nice functions for computing the determinant - as proposed by M. Day
for MAGIC, and by M. Dumontier for the Quinto, and if the workspace offered a very
large size, the domino would produce WRONG results, because of floating-point
catastrophic roundings (truncations) all along the huge number of operations which
would be necessary: this domino is a black box for the APL user... (the same holds for
the inverting subroutines of mathematical FORTRAN libraries).

And the "almost-intuitive method by symmetry", which allowed to solve MAGIC or the
QUIN for N¦3, raising M to some low power, cannot be general:

For a binary square matrix M with order N×N or N*2 i.e. with shape 2½N×N, then, if the
matrix is invertible, the maximum power so that M raised to this power equals a unitary
matrix, is: ̄ 1+2*N×N or ¯1+2*N*2: such a huge value, e.g. for N¦20, prohibits the
attempts of replacing matrix inversion by products. Moreover, when matrix M is not
invertible, no power of M will ever equal a unit matrix!

Indeed, a new method for binary matrix inversion had to be worked out...

More mathematical difficulties

Here is matrix M for N¦4 together with its graphic
look ‡‡‡

1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0

0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0

0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 0

0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0

0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0

0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0

0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

Since this matrix is still small, we can consult the gentle "domino-astrolog", just as a
matter of curiosity:

 R„�M

DOMAIN ERROR

 R„�M

 ^

Here are the graphic outputs for matrices M with N¦5 and N¦6:

The "domino astrolog" also reports 'DOMAIN ERROR' for N¦5, but works - it does not
report any error - for N=6. We do not care about R itself; the astrolog was used as a
failure test... ONLY.

Anyhow, for the moment, the fact that the determinant of M may be 0 or different from
0 remains... impredictible. But we have quickly found (without computing the

determinant), because � immediately returns an error - which is not, for these small
values of N, a LIMIT error - that M may be NOT-invertible, in quite a lot of cases. So,
in the GENERAL case, matrix inversion will fail... with or without our domino!

Solving the paradox

Function IG (matrix Inverse in the General case) is a revisited domino for binary - or,
rather, integer-modulo2 matrices (and a nice proposal of extension for APL itself).

IG always produces, as a solution, an invertible matrix, even with an all-zero matrix as
its argument!

In integer modul02 algebra, (in the set Z/2Z), 0 means number 'Zero', while 1 means
'Everything which is not 0', INCLUDING infinity!): 1 is THE infinite for 0, (its
inverse)... There is no sign in such an algebra, so that there is only one type of infinity.
When a null square matrix also represents 0, then a unitary matrix represents 1, and also
the inverse of the null matrix: the secret lies within a definition.

The Algorithm which is used in the IG function, is based on APL-T.O.E. concepts (cf.
APL92, St Petersburg): Every algorithm should reduce to combinations of ¬ and ¬\
(¬/ being a sub-case of ¬\). This had to hold also for matrix inversion, when M is a
binary matrix, considered as containing (Z/2Z)-data.

IG is an optimiser: without knowing the value of the determinant (which is 1 for all
strictly modul02-invertible matrices, and 0 otherwise), it will automatically find the
minimum subset of orthogonal (independent) vectors of the matrix vector-space, and
complete, if non-independent vectors are found, by vectors which will form a subsidiary
independent vector-space for the original order N×N of matrix M. Hence the fact that the
inverse of a null matrix becomes a unitary matrix.

So, for a strictly-invertible matrix M, function IG finds the exact inverse I, with no
error, even for large values of N×N in the relatively-simple QUIN problem, and IN
GENERAL.

For a non-strictly invertible matrix, IG will find the minimal solution (and, when it is
programmed to do so, stop iterating earlier than when M is strictly invertible!); this
solution is ALWAYS an invertible matrix, which, if re-inverted, will exactly reproduce
the first rows and columns of M which correspond to the orthogonal (independent)
vector-space (the basis).

Then, in some QUIN puzzles, the full symmetry of the square is destroyed (one would
say that 'symmetry break' has occurred, in theoretical physics).

Other minimum solutions are equivalent by symmetry within the square board N×N, if
one rotates the pattern which has been found, or if one reverses it (using, in APL,
functions ² ´ ³ and their combinations).
Of course, because all matrices M are diagonal-band sparse matrices, there are other
known ways of inverting them.

The main goal of the present paper was not puzzle solving, but General Problem
Solving, introducing an algorithm for the inversion of ALL binary/modulo2 matrices,
which would NEVER signal any error, and find orthogonal sub-spaces, even in the case
of classical non-inversibility, while all methods with uncontrolled roundings will
undoubtfully fail, for large cases.

The QUINs are naive puzzles (at least, in "MAGIC"/"Inversion Diabolique", all masks,
also named "inverters", are different). One can try to build more sophisticated QUINs,
with a shape of the mask that will depend on each sub-square: in such a case, matrix M
will no longer look like a band-matrix; hence the need for a general inverter. But this
problem is nice for checking.

In order to prove that giant puzzle solving may be undertaken on a PC with an
interpreted language (a few lines of APL code) in a small workspace, Appendix 1
presents the panoply of QUINs, while Appendix 0 presents the APL functions.

In despite of limitations imposed by IBM, and of memory-adress limits in the PC-AT
machines, QUIN 15 (forming a binary matrix with order 225 ie 50625 items) can be
solved even with TryAPL2 for free (because TryAPL2 codes binary items in bits).

Middle-order QUINs were obtained (and saved) using APL.68000 on the Macintosh and
the Atari, high-order ones with APL*PLUS II on 386 (Compaq) and 486 (Dell) PC-
compatible machines.

QUIN 47 requires matrix inversion of a non-invertible matrix with 4,879,681 items. The
invertible matrix of QUIN 48 contains 5,308,416 items. The inaccurate result of the
domino, if � could work for a matrix with 2304 rows and columns (?), would require
42,467,328 bytes of storage for its result alone. This number is already beyond the
capacity of all usual PC's and large enough to make people reluctant to lose their time
with floating-point arithmetics. And 48 is still a small number...

Some patterns are amusing (cf. the 'writing-machine' for N¦9, the 'priest' for N¦44) .

All are, anyhow, aesthetical.

Reference

Some more details will be given in a paper entitled "La Quintescence du Quinto"
especially about matrix powers, in "Les nouvelles d'APL" No 9 (Dec. 1993). Other
references are given in the text. A fully-documented software will be available at the
Software Exchange Booth, at APL94, Antwerp, Belgium, for several APL
implementations.

Thanks

Louis Metayer shall be thanked for help, getting the higherorder QUINs on a fast 486
machine with a 66 MHz clock (and he is still going on, in order to increase his
collection).

IBM and all the team which realised TryApl2 as a free APL interpreter also deserve a
special mention: for the first time, the capabilities of APL & APL2 can be shown with a
powerful and pleasant implementation which handles binary items in bits, so that many
teachers of mathematics, students and physicists can discover the courses about
binary/modulo2 matrix algebra we have developed, with plenty of consequences in
physics and computer science, as well as in biology, especially in genetics. (For the
moment, this (free) course is in French)/

Appendix 0 Functions

 ’R„QUIN N;E;F;G;H;L;P;Q;V

[1] Q„N×P„N+1+1ª F„1+1†L„G,G„×/H„P,Pª E„N,Nª V„G†Q½P†N½1ª L„-P+1

[2] M„H†3 3½0 1 0 1 1 1 ª M„,M ª M„F†M ª M„L½M ª M„VšM ª V„L²V

[3] M„V/M ª X„IG M ª S„E½X„¬/X ª R„FG S ª R„R,'|',FG E½¬šXšM

’

M and X are global. The function is a sequence of short ISO-APL parenthesis-free
expressions, so as to prevent "ws FULL". It can become a one-line function.

 ’M„IG M;D;I;J;K;L;N;S;V

[1] I„ŒIO¬J„l ª L„¼D„1†S„½M ª K„½I‡V„D†1 ª M„M,S½V,0

[2] 'I„,M[N„V/L;] ª J„V¬M[;I¼1] ª J„½I„J/L

 ª M[I;]„M[I;]¬M[J„J/N;] ª V„0,¯1‡V' wh 'K¬N'

[3] V„M[;L] ª V„S†V ª V„1,V ª V„¬\V ª V„^\V ª V„+/V ª V„“V

[4] N„0,D ª M„N‡M ª M„M[V;]

’

Several versions were tested. IG can also become a one-line fn. Lines [3] and [4] can be
made much shorter; again, decomposing into elementary statements is an insurance
against "WS FULL". “ on arrays is not used although it could be: a) because it is not an
ISO-standard, b) because it may produce WRONG results, on large matrices, due to -
again - the deficiencies of floating arithmetics, c) because, on permutation matrices, ¬\
is much faster (there are some fundamental connections between ¬\ and ““: "grade"
and "grade grade" themselves ARE connected to binary matrix inversion, so that the
problem is recursive!).

The main part of CP time is consumed by line [2]; so, efforts to use ¬ only as THE
PRIMITIVE in the algorithm were successful; (diadic ¼ can also be replaced by ¬ and
compression by a mask) .

 ’ ‘E wh ‘L;‘C © the "while" function

[1] ‘C„–•‘L ª –‘C/‘E ª …‘C/1 © executes ‘E while –‘L

 ’ © remains TRUE.

Note. The "wh"-loop condition may be replaced by a condition that will stop the
iteration as soon as matrix M is not invertible; this is detectable in I¼1 and best realised
by error-trapping, replacing "wh" by a "while_no_error_occurs" fn; then, lines [3] and
[4] will, as an example, return a unitary matrix as the generalised inverse of a null-
matrix in the extreme case of non-strict-inversibility. A problem with the domino (alrea-
dy noticed by the late Gilles Martin at APL80, Noordwijkerhout/Leiden (NL», is that
one loses some useful results which are hopelessly replaced by the fatal "DOMAIN
ERROR" message.

Such a WHILE-loop may be semantically considered as a scanning operation along the
columns of M. One can as well scan the rows of M. The ¬ while-scanning is a temporal
form of differencescanning in parallel (¬\ is more present in the IG function than one
may think!). within the function, the original M is stepwise-transformed into a
permutation matrix, while in the reciprocal space, a unitary matrix suffers from the
same scanning, and, stepwise, becomes the inverse matrix of M, except for a
permutation of its rows which is rearranged at the end by the reciprocal (just transposed)
permutation matrix, obtained as the left part of M. One can also use two matrices
instead of a single "CinemaScope" M within IG. Then, the APL version becomes
slightly slower, while the risk of "WS FULL" decreases.

Function FG is trivial, a good exercise for the reader with the semi-graphic characters

 of the PC-ŒAV. (Such graphic outputs required, on the Macintosh, to modify
the APL.68000 font).

 ’R„FG B;K;L;N;ŒIO

[1] N[ŒIO„O]„K„K+2|K„1†N„½B ª B„N†B ª L„1¬K„K½1 0 ª R„KšB„N†B

[2] R„' '[2ƒR,[¯.1]LšB] ª © R„'|',R,'|'

’

This is one of the possible versions. Removing the "©" allows to catenate a full vertical
bar left and right to show that the output corresponds to a matrix, Formatted
Graphically. Example:

 A„FG M„²GENITON 29 ª A,' ',FG IG M

This example clearly illustrates the properties of "genitons", when ² or ´ mirrored:
these self-similar (Sierpinski) matrices are modulo2-self-matrix-inverses for all orders
from 2 to infinity; the example with order 29 is chosen just to fit the page width. For
such matrices (this was unknown before the "APL-TOE" paper at APL92), IG can be
tested nicely, but is of... no use. The successive rows of this matrix M may also be
obtained as the 29 successive iterates of ¬\ with initial B set to 32†1:

 M„0½B„32†1 ª 'M„M,¯29†B„¬\B' do 29 ª FG IG M„²29 29½M

© e.g. with the "do" function:

© ’ ‘E do ‘N

© [1] ‘N„‘N×½‘E„‘E,'ª' ª –‘N½‘E

© ’

© One may omit IG in the here
© above statement and get the
© same output
© 32 is 2*—2µ29 the first power
© of 2 not lesser than the wanted order for the
matrix.

¬\¬\¬\

Appendix 1 The dynasty of QUINs

NB. À partir de ce point, pour cette version électronique, les zones de
contrôle noires à droite des Quin ont été omises.

