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Abstract

This paper is intended to prepare a "Round Tablua Binary Algebra at APL94 in
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The Quins

The Quin-puzzle is, inter alia, described by Dunemnn "Les Nouvelles d'’APL", No 8
(Oct. 1993), under the name "Quinto", restrictedrt@ll examples with N= 3 5.

Given a square board with NxN sub-squares, clicking such sub-square will invert
its colour, as well as the colour of the four hontal and vertical adjacent sub-squares,
(provided these lie within the main square or bhiagdery click inverts a swiss

Cross: +

So, for a 3x3 board, the solution is almost triaald may be deduced intuitively, by
pure symmetry: What holds for one corner shall Holdall four corners. What holds

for the sub-square that lies in the middle of tingt fow shall hold for the three other
sub-quares which lie in the middle of the last rawd in the middle of the first and of

the last columns; so, few combinations have todstetl before one finds that the st
Andrew cross is the unique solution:

The pattern on the right is a proof that clickihg sub-squares delimited
:-:l- by the x-cross fills the board.

Conversely, if the colour-inverting pattern were th-cross, a solution would be (by
duality) the former inverting pattern, a Swiss $@voy or +) cross ("sharing cross"?).

Now, given a 4x4 board, how can one find the soh®iThen, for a NxN board, with N
much greater than 4 or 5, how can we 1) know ifghe a solution, 2) find it in the
most convenient way?

Some special mathematical developments have todught of...

But, from the beginning, we should remain awarehef fact that such a puzzle - like
many other ones - is purely binargo, using anything else than pure binary algebra,
then bit matrices, shall appear as a waste (of, tohéhought, of computing power, of
mathematics).

Let us go back to the 3x3 board and describe thes8ible clicks by their effect on the
whole board plus one virtual row and column on gwde. In other words, the original
3x3 board is replaced by a 5x5 one. A click (syndaal by-+ in the upper leftmost
corner of the 3x3 board on the left only invertsub-squares in the real board (in solid
colour) and 2 sub-squares outside (in half-tong grehe 5x5 virtual board):
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This click corresponds to the binary matrix masiehbove.
Once ravelled into a 25-item vector, the mask bexsom

0100011100012 0000000000O0O00
A4t +o4 ot A4t

The arrows point to the bits which belong to th& ®»ard.

The 2nd mask, for a click in the middle of the st/ of the 3x3 board, corresponds to
~1¢ applied to the 1st mask:

6001000112121 000100O0O0O0O0O0CO0O0O0O0O0

The 3nd mask, for a click right of the 1st row loé t3x3 board, correspondsta¢ on
the 2nd mask or to2¢ on the 1st mask:

60001000111 00010O00O0O0O0O0O0O0O0O0DO0

For the second row, we have, respectivelyp “6¢ ~7¢ of the 1st mask, while for
the 3rd row, the shifts becoma o “11¢ ~12¢ respectively.

Dropping the first 6 items and the last 6 itemsalbfthese 25-item vectors, then items
which do not belong to the 3x3 board, one obtagdk9 matrix of the binary rule for
all the inverters. Then, we go back to the soluttdnthe MAGIC puzzle [cf. "Les
Nouvelles d'APL" No 7 (May 1993) as well as "VECTObIl. 10 No 1 (July 1993):
two papers by M. Day, and G. Langlet).

M a M is a binary matrix with 81 items:
110100000 which is best displayed, using
111010000 semi-graphics, as shown on the
011001000 right, with the help of the
100110100 paper- sparing function "FG",
010111010 given in the Appendix, that will
001011001 prove useful for greater values
000100110 of N, formating the QUINS.
000010111
000001011

So, if I is the modulo2 inverse matrix of M, themetsolution will be given by:
3 3p=/I which is the solution of an integer system of 8atpns modulo 2, knowing
that the starting pattern s 3 p 0 (empty pattern, theapo when ravelled), and that
the goal is3 3p1 (full pattern i.e.9p1 when ravelled), the modulo2-difference or
binary difference between both patterns being tmesas the full pattern: All the
second members of the equations are I's, hence/tsbortcut.

If X is the unknown solution, ravelled, then . aM (or 2 | X+ . xM) shall return a vector
of I's.



In this case, a search for the successive matmvemof M immediately shows (it is
almost intuitive), that/= . AM=z . AM= . AM IS a unitary matrix, so that matrix inversion
becomes useless: | has to equal rM= . M i.e. the cube of M. So, a very short ISO-
APL expression gives the unique solution fge3 (problem QUIN 3); it is

3 3p=z/M#.AM#.AM ONCe one has built matrix M, in fact directly he teduction both
along the rows and the columns, by the same bmask B:

cooo0oo000601110011100111000°0©O00

of a larger 25x25 matrix which takes care of thenecs and of the sides, in which each
row is a circular rightwards-shift by one item betclicking effect of the Swiss cross
for the 25 sub-squares of the larger matrix.

If N is the size of the puzzle, the size is N+2tfoe virtual pattern matrix; however, the
patterns may be obtained - cf. the QUIN functiothi@ Appendix, even without circular
shift.

When N grows, the number of items within M will @ys bevxu. Already, this will
prohibit the use of floating-point arithmetics; ewith g (the domino), the result of
which is always "real", requiring, in APL, 64 bper item. Even if it were possible to
usefl as well as nice functions for computing the deteant - as proposed by M. Day
for MAGIC, and by M. Dumontier for the Quinto, arfdhe workspace offered a very
large size, the domino would produce WRONG resutiscause of floating-point
catastrophic roundings (truncations) all along thee number of operations which
would be necessary: this domino is a black boxHerAPL user... (the same holds for
the inverting subroutines of mathematical FORTRAMdries).

And the "almost-intuitive method by symmetry", wiiallowed to solve MAGIC or the
QUIN for N;3, raising M to some low power, cannetdeneral:

For a binary square matrix M with ordex~ or N« 2 i.e. with shape o NxN, then, if the
matrix is invertible, the maximum power so that &sed to this power equals a unitary
matrix, iS: “1+2xNxN Oor “1+2xNx2: such a huge value, e.g. fe20, prohibits the
attempts of replacing matrix inversion by produdikreover, when matrix M is not
invertible, no power of M will ever equal a unit trig!

Indeed, a new method for binary matrix inversiod tabe worked out...



M ore mathematical difficulties

Here is matrix M forN=u together with its graphic
look v ¢+

O O O O O O OO O o oo P+ oo mr P
O O O O oo oo oo okr oo mkr P
O O 0O oo oo oo ok ook ke O
O O O O o oo Pk OO O O O
O O O 0O o o oOokr OOk P OO O K
O o oooopPr ook, kP OO B+ o
o ococoocoopPpr OO RPr PP OO O O
O O o opPr OO0 O Pk kP OO BFP» O o o
O O OOk Pk OO O BFr O o o o
opPr oo mr r Kk OO Fr O O O o o
opPpr ooOor PP OO Kk OO O O o o
P O OO kFr P OO FP O O O O O O O
O O kP PP O O O FPr OO O O O O o o
P PO OPFP O O O O O O O O O o o

o
o
o

o
o
O Ok, PP O OBk O O O O O O O O O

DD P P PO O KPP O O O O O O O O O O

Since this matrix is still small, we
matter of curiosity:

an consule thentle "domino-astrolog", just as a

R<EM
DOMAIN FRROR
R<EM

A

Here are the graphic outputs for matrices M wi#s andn=6:

The "domino astrolog" also reports 'DOMAIN ERRO®' § =5, but works - it does not
report any error - for N=6. We do not care aboutdRlf; the astrolog was used as a
failure test... ONLY.

Anyhow, for the moment, the fact that the determira M may be 0 or different from
0 remains... impredictible. But we have quickly ridu (without computing the



determinant), becausg immediately returns an error - which is not, foege small
values of N, a LIMIT error - that M may be NOT-imtible, in quite a lot of cases. So,
in the GENERAL case, matrix inversion will failwith or without our domino!

Solving the paradox

Function IG (matrix Inverse in the General cased igvisited domino for binary - or,
rather, integer-modulo2 matrices (and a nice prapafsextension for APL itself).

IG always produces, as a solution, an invertiblérimaeven with an all-zero matrix as
its argument!

In integer modul02 algebra, (in the set Z/24), means number 'Zero', while 1 means
'‘Everything which is not 0, INCLUDING infinity!):1 is THE infinite for O, (its
inverse)... There is no sign in such an algebrahabthere is only one type of infinity.
When a null square matrix also represents 0, thamtary matrix represents 1, and also
the inverse of the null matrix: the secret lieshivita definition.

The Algorithm which is used in the IG function,based on APL-T.O.E. concepts (cf.
APL92, St Petersburg): Every algorithm should redtec combinations o and =\
(#/ being a sub-case &f\). This had to hold also for matrix inversion, whenis a
binary matrix, considered as containing (Z/2Z)-data

IG is an optimiser: without knowing the value oktdeterminant (which is 1 for all
strictly modulO2-invertible matrices, ana otherwise), it will automatically find the
minimum subset of orthogonal (independent) vectdrthe matrix vector-space, and
complete, if non-independent vectors are foundydmtors which will form a subsidiary
independent vector-space for the original order of matrix M. Hence the fact that the
inverse of a null matrix becomes a unitary matrix.

So, for a strictly-invertible matrix M, function I@nds the exact inverse I, with no
error, even for large values of<n in the relatively-simple QUIN problem, and IN
GENERAL.

For a non-strictly invertible matrix, IG will finthe minimal solution (and, when it is
programmed to do so, stop iterating earlier thaerwM is strictly invertible!); this
solution is ALWAYS an invertible matrix, which, re-inverted, will exactly reproduce
the first rows and columns of M which correspondthe orthogonal (independent)
vector-space (the basis).

Then, in some QUIN puzzles, the full symmetry of #guare is destroyed (one would
say that 'symmetry break' has occurred, in thezaigbhysics).

Other minimum solutions are equivalent by symmetithin the square board NxN, if
one rotates the pattern which has been found, oné reverses it (using, in APL,
functions¢ e & and their combinations).

Of course, because all matrices M are diagonal-lsadse matrices, there are other
known ways of inverting them.

The main goal of the present paper was not puzaleng, but General Problem
Solving, introducing an algorithm for the inversioh ALL binary/modulo2 matrices,
which would NEVER signal any error, and find ortbogl sub-spaces, even in the case
of classical non-inversibility, while all methodsitwv uncontrolled roundings will
undoubtfully fail, for large cases.



The QUINSs are naive puzzles (at least, in "MAGIGiYersion Diabolique”, all masks,
also named "inverters", are different). One cantdrypuild more sophisticated QUINS,
with a shape of the mask that will depend on eathssjuare: in such a case, matrix M
will no longer look like a band-matrix; hence theed for a_generahverter. But this
problem is nice for checking.

In order to prove that giant puzzle solving may lalertaken on a PC with an
interpreted language (a few lines of APL code) isnaall workspace, Appendix 1
presents the panoply of QUINSs, while Appendix Osprés the APL functions.

In despite of limitations imposed by IBM, and of mary-adress limits in the PC-AT
machines, QUIN 15 (forming a binary matrix with erd225 ie 50625 items) can be
solved even with TryAPL2 for free (because TryARid#les binary items in bits).

Middle-order QUINs were obtained (and saved) ugiRd.68000 on the Macintosh and
the Atari, high-order ones with APL*PLUS Il on 3§6ompaqg) and 486 (Dell) PC-
compatible machines.

QUIN 47 requires matrix inversion of a non-invelilbnatrix with 4,879,681 items. The
invertible matrix of QUIN 48 contains 5,308,416nite The inaccurate result of the
domino, if g could work for a matrix with 2304 rows and colun{f®3, would require
42,467,328 bytes of storage for its result alonkeis Thumber is already beyond the
capacity of all usual PC's and large enough to npeaple reluctant to lose their time
with floating-point arithmetics. And 48 is stillssmall number...

Some patterns are amusing (cf. the 'writing-machaorev=9, the 'priest' fow=1y) .
All are, anyhow, aesthetical.

Reference

Some more details will be given in a paper entitted Quintescence du Quinto"
especially about matrix powers, in "Les nouvellésPd" No 9 (Dec. 1993). Other
references are given in the text. A fully-documdnseftware will be available at the
Software Exchange Booth, at APL94, Antwerp, Belgiudfor several APL

implementations.

Thanks

Louis Metayer shall be thanked for help, getting bigherorder QUINs on a fast 486
machine with a 66 MHz clock (and he is still going, in order to increase his
collection).

IBM and all the team which realised TryApl2 as @efrAPL interpreter also deserve a
special mention: for the first time, the capalehtiof APL & APL2 can be shown with a
powerful and pleasant implementation which hantleary items in bits, so that many
teachers of mathematics, students and physicigts discover the courses about
binary/modulo2 matrix algebra we have developedh wienty of consequences in
physics and computer science, as well as in biglegpecially in genetics. (For the
moment, this (free) course is in French)/



Appendix 0 Functions

VR«<QUIN N;E;F;G;H;L;P;Q;V
[1] Q«NxP«N+1+10 F<«1+414L<«G,G«x/H«P,Po E<N,No V<G+QpP+Nplo L<-P+1
[2] M<H43 3p0 1 0 1 1 1 ¢ M<«,M o M<FAM o M<LpM o M<V#M o V<LV
[3] M«V/M o X<«IG M o S<«EpX<#/X ¢ R«FG S o R<«R,'|',FG Epz+X+M
v

M and X are global. The function is a sequence hafrtsISO-APL parenthesis-free
expressions, so as to prevent "ws FULL". It carobez a one-line function.

VM<IG M;D;I;J3;K;L;N;S;V
[1] I<[I0zJ<«1 o L<1D<«14S<«pM o K<«pI+V<«D+1 o M«M,SpV,0
[2] '"I<,M[N<V/L;] o J«VzM[;I11] o J<«pI<J/L
o M[I;]1<«M[I;1zM[J«J/N;] o V<0, 1+V' wh 'KzN'
[3] V<M[;L] o V<S4V o V<1,V o V«z\V o V<aA\V o V<«+/V o V<AV
(4] N«0,D ¢ M<«NvyM o M<M[V;]
\

Several versions were tested. IG can also becoome-dine fn. Lines [3] and [4] can be
made much shorter; again, decomposing into elemestatements is an insurance
against "WS FULL".4 on arrays is not used although it could be: apbse it is not an
ISO-standard, b) because it may produce WRONG teesuh large matrices, due to -
again - the deficiencies of floating arithmeticspecause, on permutation matrices,

iIs much faster (there are some fundamental cororectietweer:\ and 4 4: "grade”
and "grade grade" themselves ARE connected to \bimeatrix inversion, so that the
problem is recursive!).

The main part of CP time is consumed by line [2), sfforts to use: only as THE
PRIMITIVE in the algorithm were successful; (diadiccan also be replaced kyand
compression by a mask) .

V AEF wh AL;AC a the "while" function
[1] AC<«e3AL ¢ oAC/AE o ->AC/1 A executes AE while ¢AL
Y n remains TRUE.

Note. The "wh"-loop condition may be replaced byandition that will stop the

iteration as soon as matrix M is not invertiblastis detectable im: 1 and best realised

by error-trapping, replacing "wh" by a "while_norar occurs" fn; then, lines [3] and
[4] will, as an example, return a unitary matrix tag generalised inverse of a null-
matrix in the extreme case of non-strict-inver#iilA problem with the domino (alrea-
dy noticed by the late Gilles Martin at APL80, Ndwarjkerhout/Leiden (NL», is that

one loses some useful results which are hopelesplaced by the fatal "DOMAIN

ERROR" message.

Such a WHILE-loop may be semantically considered asanning operation along the
columns of M. One can as well scan the rows of Ke 4 while-scanning is a temporal
form of differencescanning in parallel\ is more present in the IG function than one
may think!). within the function, the original M istepwise-transformed into a
permutation matrix, while in the reciprocal spaaeunitary matrix suffers from the
same scanning, and, stepwise, becomes the inveadaxnof M, except for a
permutation of its rows which is rearranged atehd by the reciprocal (just transposed)
permutation matrix, obtained as the left part of ®he can also use two matrices
instead of a single "CinemaScope" M within 1G. Théime APL version becomes
slightly slower, while the risk of "WS FULL" decrses.



Function FG is trivial, a good exercise for thederawith the semi-graphic characters
" w"W’ of the PCHAV. (Such graphic outputs required, on the Macihfds modify
the APL.68000 font).

VR«FG B;K;L;N;0IO0
[1] N[OIO«0]<«K<K+2|K«1tN«pB ¢ B«N+B o L<1#K<Kp1 0 o R<«K/B<N+B
(2] ket W (200, (7. 170/B] o a Re'| ' R, 1|
v

This is one of the possible versions. Removing'tfi@llows to catenate a full vertical
bar left and right to show that the output corresf® to a matrix, Formatted
Graphically. Example:

A<FG M<¢GENITON 29 o A,' ',FG IG M

This example clearly illustrates the properties"@énitons”, when¢ or e mirrored:
these self-similar (Sierpinski) matrices are mod#delf-matrix-inverses for all orders
from 2 to infinity; the example with order 29 isaden just to fit the page width. For
such matrices (this was unknown before the "APL-TQ&per at APL92), IG can be
tested nicely, but is of... no use. The successives of this matrix M may also be
obtained as the 29 successive iterates\ofvith initial B set to32+1:

M<0pB<32+41 o 'M«M, 294B«z\B' do 29 o FG IG M<«$29 29pM
a €.g. with the "do" function:

A V AEF do AN
o [1] AN<«ANxpAE<«AE,'o' o oANpAE

A \Y

a One may omit IG in the here

a above statement and get the

a Same output

an 32is2x[ 229 the first power

a of 2 not lesser than the wanted order for the
matrix.

2\z\ %\



Appendix 1 Thedynasty of QUINSs

QUIN1 QUIN2 QUIN3
-J-

QUIN 7 QUIN 8 QULN 9

QUIN 10 QUIN 11

ool FE

QUIN 12 QUIN 13

|

QUIN 14 QUIN 15

iyt

QUIN 17

QUIN 18




NB. A partir de ce point, pour cette version élecique, les zones de
contrble noires a droite des Quin ont été omises.

QUIN 21
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QUIN 26
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