
APL CAM 16-1, 1994. pp. 50-52

Letter to the Editor: APL Paleontology Gérard A. Langlet (Feb. 1994).

Recently, I started a new bibliographic search about ¬ and ¬\ . So, I decided to go
back even to the "ancient times" i.e. before scanswere released in APL (in IBM's
APL.SV implementation). Then, I could not escape reading again the first "true"
reference about APL : K. Iverson's book (1962) that I religiously keep in my private
library.

The surprise was great when I discovered p. 252, in the chapter "The logical
calculus", the properties of the S matrix given by relation (7.16). K. Iverson refers to
Muller (1954) and to Calingaert (1960). In fact, the "matrix of binomial coefficients" is
Pascal's triangle embedded as P within a null square matrix; it is known to have, with
the same orientation as S, e.g. given for S3 in APL notation with index-origin 0, by :
P „V °. ! V „ ¼8 an inverse matrix identical with P in absolute value: P¦|�P so
that, modulo 2, then, for any size, matrix S which is 2|P must be self-inverse (and so is
³S). Did Ken Iverson feel that S was also the initial of Sierpinski who introduced the
fractal construct (first with a curve and not as a binary matrix) in a paper he sent - in
French - to the Académie des Sciences of Paris in 1921 ?

Now, this page from "A Programming Language" has become for me the most
important page of the book, and I do hope it will greatly help people to understand the
fundaments of "APL-TOE" [Langlet, 1992], especially outside the APL community... ,
because the language Iverson used in the "ancient times" was readable by professional
mathematicians (and still is!).

The properties of the S matrix were introduced in France by Hadamard (the Hn
matrices), and used in the US by Walsh together with Rademacher codes - but with the
arithmetical negation: In fact, it is a matter of notation:

H2 is matrix |1 1| H4 is |H2 H2| H8 is |H4 H4| etc ...
 |l -1| |H2 -H2| |H4 -H4|

So, every theorem or technique already proved with Hadamard or Walsh
transforms also holds, if one now replacesthe arithmetic negation of 1, which returns -1
(noted ¯ 1 in APL), by the logical negation of 1 which returns 0. I suspected that the use
of 0 (a renormalization in fact) would simplify many algorithms, and I now know it
does indeed reduce them to almost nothing.

But the most interesting properties come from the fact that ²Sn (matrix Sn being
noted S(¬,n) by Iverson in 1962) is also the modulo-2-matrix-inverse of ́ Sn;
moreover, such matrices do exist for any order (size), and are cubic roots of a unitary
matrix, of course modulo 2; (a self-inverse matrix is a square root of the unitary matrix).

Already, for order 2 (so for shape 22 in APL), only

|1 1| and |0 1| are non-trivial cubic roots of |1 0| the IIII matrix.
|1 0| |1 1| |0 1|

Since IIII is also its own cubic root, and because the (modulo-2) sum of the three
matrices is a null matrix, the S matrix is an exact representation of j, the complex cubic
root of 1, with four bits only, while it is impossible to represent j exactly in (IEEE or
other) double-precision notation with twice 64 bits for each part, the real part (¯0.5)
and the imaginary part (0.5×3*0.5) in any conventional programming language -

including extended APL dialects which have adopted the (real)J(imaginary)
convention.

This is a proof that one need not define first any negative, rational, irrational
number, then constant i itself as the imaginary square root of -1, in order to define j as a
natural constant.

No other number than 0 or 1 is necessary in order to define j which has always
been for me (as a theoretical crystallographer) the main constant of physics... because j
is the intrinsic rotation matrix of the Euclidian 3D universe, the space component of
Einstein's spacetime; according to Euler, j is also the exponential of two thirds of π
(exact in extended APL, on the paper only, as: *±2÷3).

Then, we may ignore e and π as fundamental transcendental numbers: they become
consequences of j when observations occur (as usual) at a macroscopic scale: all
phenomena may be described by secondary laws (Lyapunov exponents, Mandelbrot
exponents inter alia) which do not explain the deep TRUE nature of the phenomena: If a
phenomenon is, statistically, Gaussian, never forget that the famous bell-shape curve is
a) an exponential (squared) construct, b) the envelope of the binomial distribution, then
indeed given by the Pascal triangle if the description is discrete and numeric, but by its
parity i.e. the Sierpinski difference-scanned construct if the description is in spins, genes
or parities (there is no other choice than to describe everything with 0s and 1s in
computers, even if one does not want to...).

Now, since j2 is the complex conjugate of j, complex conjugation corresponds to
a 2nd diagonal symmetry (in APL either ²´ or ´²) ! The choice of any of both
matrices, e.g. the "2-geniton G" as done in APL-TOE :

as either j or j2 is arbitrary. If this matrix is chosen as j, then its modulo-2-
matrix-square or its modulo-2-matrix-inverse is obtained by ²´ or ´² and
equals j2 (and conversely, of course).

The infinite set of symmetric j matrices, that one could write (but not obtain on
any computer for high values of N), this time, as: ²2|V°.!V„1N in ISO-APL is re-
written much more obviously as the successive iterates producing - with NEVER any
error or truncation - either the rows or the columns of the giant fractal Sierpinskian
matrix, with a much smaller ISO-APL idiom (the nucleus of every computation as
shown [Langlet, 1994] by a recent paper about the Turing machine): B„¬\B„N†1 .

This "Bit-Bang" model of our 3D-Universe is, according to the value of N, either
large but finite, or infinite..., then either periodical or endless, but by no means
reversible, since no minus sign allows anymore to mirror time's arrow in the parity
soup of this fantastic Z/2Z algebra which ignores cosmological constants, Hamiltonians
and equations, as well as a bunch of taken-for-granted concepts; this algebra allows,
nevertheless, to rebuild the whole of theoretical and applied mathematics, directly in the
native language of the computer. Moreover, ¬\ revisits Shannon's theory, this time with
full precision (no smoothing, no averaging) : such a function never produces noise, i.e.
entropy growth, then is the unique possibility to explain and model, without other
postulates, how living entities may self-organize and produce such a variety of natural
shapes (unexplained by equations) without violation of the 2nd principle of
thermodynamics. Sub-periodicities may give the illusion of reversibility. At the
quantum level of information processing, then the bit level, micro-reversibility
(introduced in 1931 by Onsager, with continuous functions) does correspond to the fact

|1 1|
|1 0|

that ¬\1 0 is 1 1 while ¬\1 1 is 1 0 in the same way as †‡ and †† are the pair of
possible states for the electron (and other) spins and XY and XX are the pair of possible
states for most "living" and "thinking" entities such as you and me.

Many more connections to various fields will be developed at APL 94.

References

P. Calingaert, "Switching function canonical form based on commutative and
associative binary operations". IEEE October Meeting (1960).

L.J. Dickey, "Gray Codes, Towers of Hanoi, Hamiltonian Path on the N-cube and
Chinese Rings", APL Quote quad (ACM), Vol.24, No2, (Dec. 1993) p. 18-24.

K. E. Iverson, "A Programming Language", J. Wiley & Sons, New York, p. 251-5
(1962).

G.A. Langlet, "Towards the Ultimate APL-TOE" APL Quote Quad, Vol. 23, No 1, (July
1992) (ACM, APL92, St Petersburg), p. 118-132.

G.A. Langlet, "Building the APL Atlas of Natural Shapes", APL Quote Quad, Vol 24,
No 1 (Aug. 1993) (ACM, APL93, Toronto).

G.A. Langlet, "The Ultimate TURING Proof", Vector (UK) Vol 10, No 3, (Jan. 1994) p.
124-132.

G.A. Langlet "The Power of Boolean Computing in APL", accepted for the SHARE
Europe Spring Conf., APL Day, La Hulpe, Belgium, (Apr. 19, 1994).

D.E. Muller, "Application of Boolean Algebra to Switching Circuit Design and to error
Detection", Trans. Inst. of Radio Engineers, New York, EC3 p. 6-12 (1954).

Note. Pr. L.J. Dickey's recent paper (which was also issued in the new APL Canadian
magazine "Gimme Arrays") is quoted here:

because... the Gray code function is the inverse function of ¬\ (which, iterated, is
periodical then also produces the results of its inverse function !);

because a known way of solving Lucas (another French mathematician)' puzzle known
as "The Towers of Hanoi" is to use... a Sierpinski triangle (cf. Ian Stewart,
Pour la Science (French Ed. of Sc. Amer.) No 142 p. 103 (1989) already
quoted in [Langlet, 1992];

because the "ubiquitous" (as written by Mike Day) ¬\ will solve the cube problem as
well as symmetry reduction and ¬ algorithms can solve "Magic" - cf.
Vector, vol.10 No 1, (July 1994), and Les Nouvelles d'APL No 8 (May
1994); pure ¬ algorithms were able to solve the "Quinto-Super Puzzle" - cf.
Les Nouvelles d' APL, Nos 9 & 10 (Oct. & Dec. 1993) ; to be published
also in English soon, in 1994, by APL-CAM Journal : in such a case, a 0 1
matrix with not less than 8 million items, and with a null determinant, is
nevertheless inverted in APL*PLUS II or APL2 (fast APL implementations
which do code 0s and 1s in bits and allow large data structures to be
processed "not too slowly" by the new "least-any-power method" now able
to replace the domino which is APL's traditional least-square solver; � may
not be used anymore for large matrices because double precision truncates

too many bits, introducing fuzz i.e. noise; The "New Mathematics for the
Computer" (cf. APL Tool of Thought, New York, Jan. 1993) allow the
results not be truncated anymore, in all cases for which exact computing
facilities are required : absolute optimizing - a necessity for cryptography
and puzzle solving inter alia - is becoming practicable);

because, as now felt then conjectured, ALL puzzles and problems can be solved this
way (the most difficult question being to set all the rules of the problems...
with 0s and 1s only. APL practice will help more than the practice of any
other programming language would, don't you think so?

