

Texte dans la série "La Programmation en Vecteurs" et "APLl vs APL2". L'auteur
remarque qu'il serait intéressant de compléter les tests sur d'autres machines et sous
l'APL2 Version 3 sur 3090 avec coprocesseur vectoriel. Les lecteurs qui seraient
intéressés sont priés d'envoyer leurs résultats à l'adresse de notre association.

What is a Pernicious Loop?
Gérard A. Langlet

CEA/IRDI/DESICP/DPC
C.E.N. Saclay

F-91191 Gif-sur-Yvette France

Pernicious Loops

A loop is said to be "pernicious" when it does not appear in the notation that is used to
write an expression, but strongly increases the CPU consumption because it will be
generated underneath by the current implementation. This is the case for the "each"
operator in APL2 and APL2-like implementations. Pernicious loops will also be
enco~tered with some extensions of other operators such as "reduction" and "scan" to
mixed and user-defined functions.

Spectacular examples are given in Table I with ¹¼¨V, an expression that apnarently
looks nice to any APL2 fan, and with œ,/¼¨V, wich is much worse, since it contains
",/" as well as "each", and is an ersatz which can be used in some extenderl APL
implementations when they do not sunport "enlist" yet.

This is one of the most exciting benchmarks I have ever made, because so much
information came out from some simple comparisons.

Everybody has felt for a long time the need for a IOTA function that could work on a
vector so that:

 IOTA 3 2 0 5 7 1 returns:
1 2 3 1 2 1 2 3 4 5 1 2 3 4 5 6 7 1 in origin 1.

The above expressions are easy to imagine with extended implementations and run all
right ... on short vectors. But when you have an ISO-APLl interpreter, what should you
do to write your IOTA function?

The worst solution, that we do not consider in the bench, would be to define a function
with an explicit loop that would concatenate every ¼V[I] successively, which is just
what, in fact, the "each" operator does within a vector of vectors. An important
improvement results from the rule that states: "do not use catenate for large arrays
within loops"; first try to know the shape of the result vector, generate it with fills of the
same type as the supposed type of the result; if the result is too big for your workspace,
the WS FULL message will appear immediately; in the opposite favourable case, fill the
result by successive indeexing. In fact, you do so when programming in Fortran, Cobol
or C, since catenate is just (is it really?) a "priviliege" of APL. As far as I am concerned,
I always discard "catenate" from everyday-programming in APL except for very short
vectors.

Another bunch of pernicious loops is also provided by the "execute" primitive which, in
addition, allows splendid pornography that however stricto senso conforms perfectly to

the present ISO standard. See expression 2). Of course, it can help you in provisory
versions of your applications if you have not yet found any other means of obtaining
your result. This expression also combines a strong use of "catenate" on large vectors. It
cannot be anything but slow and difficult to maintain. Moreover you sometimes
encounter system limits, generally the maximum number of characters that is admitted
in the argument of "execute", or' the maximum size of the execute buffer, and, in some
cases the symbol table overflows... Even with N=100, you cannot get any result with 2)
in APL90 (– admits 256 characters as a maximum in my version), and it is perhaps a
good thing so far. Curiously, IBM APL on PC allovs about 8K of argument for
"execute", and IBM APL2 on PC only admits 4K... Even with the 64K limit of
APL.68000, the problem still exists, as shown in Table 1. Programminp expressions
such as 2) is encouraged only by the system accoutant!

Since expression 0") is the shortest and the one whicll is taught in APL2 manuals, it
should work fast on large vectors. Then, why do we get so quickly a WS FULL with a
800K ws? A good question to the implementers. Because of the short-integer coding,
this problem arises to a lesser extent in a PC... Note that you must not be in a hurry
anyway.

Expression 0') is also short and surely has a dazzling effect on the reader especially if he
does not practice extended APL yet. Our benchmark shows that it is as catastrophic as
expression 2) which has been murdered herebove.

As I have frequently repeated this assertion in the past, just try to think in simple vectors
and you will find solutions for which APL is appropriate. Expression 1) does not respect
the ISO-APLl standard, because it uses the "replicate" extension of "compression".
However, this extension exists in most small implementations, and is generally well-
programmed. Moreover, a unarnimous consensus will push it to be included soon into
the next standard. Good programming in a low-cost, (sometimes free) APL is possible,
although some implementations mav be very slow for a reason of double interpretation.
Another remark is the following: small APL interpreters execute ISO-APL expressions
much faster than extentded APL ones, because their data structures are more simple and
shorter; they also have less branches in their internal code.

 In general, simple and frequently-used primitives or combinations such as +/ or +\ have
been optimized by the implementers. Try to use a good subset of APL, avoiding
"encode" "decode" "execute" "catenate" and some newly-intoduced operators which are
only nice on the paper and lead to endless discussions among "specialists". APL is a
laxist language. Try to discover its tricks as well as its traps: only practice can help you.

Table 1 - Comparative Benchmark of Expressions:
O') œ,/¼¨V
O") ¹¼¨V (in APL2 - using "enlist")
1) (¼+/V)+V/V-+\V
2) –1²,')',',','(','¼',•V°.+,˜O
 with V„N½10 and ~ŒIO„1.
 All measures are averaged in milliseconds.
 ~ means: expression not admitted in this APL.
With N=10, all these expressions return:
1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 1 2

3 4 5 6 7 8 9 10
 N = 100 1000 5000 1 0000
PC AT 640K 8 MHz (same machine for all checks)

IBM APL2 O') 900 16600 346000 WS FULL
IBM APL2 O") 500 6000 60000 203000
APL*PLUS PC 7.0 1) 80 610 3000 WS FULL
IBM APL V 2 1) 240 5600 30400 WS FULL
IBM APL2 1) 220 1820 9010 WS FULL
SHARP APL (freeware) 1) 900 5350 25270 WS FULL
I-APL (freeware) 1) 4200 WS FULL ……………………….
APL*PLUS PC 7.0 2) 660 WS FULL ……………………….
IBM APL V 2 2) 1000 WS FULL ……………………….
IBM APL2 2) 1100 SYSTEM LIMIT (due to –)
 (22640 ms for limit N=844)

ATARI 1040 & MEGA ST (68000)
APL.68000 V 6.05 1) 60 540 2680 5240
(runtime is freeware)

SUN 3-160 (6802(» (same machine with 1 MB ws for all checks)
APL.68000 V 6.09 O') ~ ~ ~ ~
APL90 O') 250 4200 54000 189000
DYALOG APL 5.0 rel 6 O') 140 3800 77000 320000
APL.68000 V 6.09 1) 40 180 740 1380
DYALOG APL 5.0 rel 6 1) 60 540 3680 5400
APL90 1) 60 560 3500 7000
APL90 2) LIMIT ERROR (due to –) ………………..
DYALOG APL 5.0 rel 6 2) 250 4200 85000 302000
APL.68000 V 6.09 2) 360 12200 300000 LIMIT
 ERROR (due to –)

IBM 3090 with APL2 1.0 (ŒWA=810628 in a clear ws)
APL2 1.0 0") 3 19 160 WS FULL
APL2 1.0 0') 10 200 5200 WS FULL
APL2 1.0 1) 2 15 80 156
APL2 1.0 2) 10 233 4946 25980

